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BCUNDS AWD RATES OF CONVERGENCE FCR THE EXTENDED COMPOUND

ESTIMATION PRCBLEM IN THE SEQUENCE CASE

I. Introduction and Summary.

A, The problem

Let 6 = (91, Oy oev s Op5 oee ) be a countably infinite vector

whose components Qi- are eiements of some finite interval { of the

real 1ine. Let = (pe(-): e .} be for some measure 4 a family of

known probapility density functions with parametér 8. Let Xi be a

real valued randon: varizbie with density- pe-(‘).' Suppose the vector §
i :

is unknown and for each i it is desired to estimate Gi. The estimates

are to be made in sequence and the estimate of Gi may be based on the

independent observations X, j =1, ... , i. Thus for each

J bt

i=1, 2, ... , a non randomized estimator wi(zi) is sought for 6,
where X  is the vector of observations (X, oee Xi)' It is assumed

that at each stage of this estimution problem one suffers sguared error

loss, so that if ¢, is the estimate of 6, a loss of {o@. - 9.)2
i i i

i
units is suffered. The risk of an estimator ¢, 1s defined to be the
expected loss, that is E[(wi(zi) - 91)2]. The average risk for n

2stimations becomes

3 N

n
Y El(9,(X,) - 6,)°]. Cne would like to find,
- i=1 :

for specified & and ¥, a decision procedure @ = (¢l, Pps oo )} which,
on the basis of its asverage risk for the first n estimations, is in

some sense optimal for large n.




One way in which such a provlem could arise 1s as follows: suppose
the Navy wishes tc screen all new recruits and to classify them on the
basis of their "natural aptitudes” to be radar technicians. In an
attempt “.c dc¢ this, each recruit s given a test whose outcome can be
repressrted as a number. Suppose also that "natural aptitude" can be
represented on a numerical scale. On the basis of prolonged testing and
evaluation in the past, the Névy has been able to fitfa good probability
distribution model for the outcome of a person's test score given his
"true" aptitude as a parameter. The Navy now wants to estimate each new
recruit's aptitudé on the basis of his test score. While squared error
loss is somevwhat artificial, it is clear‘that the more the Navy errs in
estimating a recruit's aptitude the greater the loss it suffers, and

-
squared error loss is a convenient way to represent this. In this
examplé it is also apparent that many dccisions will be made, and from '
the Navy's point of view, ihe average risk incurred is a reasonable basis
upon which to judge the "optimality" of a decision procedure. In this
example, then, Gi would be the ith recruit's true aptitude and Xi
would be his test score.

In the preceding example it is not unreasonable to assume each
recruit's aptitude is independent of all other recruifs‘ aptitudes: An
example will now be presented in which it is not unreasonable to sqppose
the Gi's would occur in "patterns." Suppose a Navy anti-submariné‘
group is on patrol duty to guard aéainst subﬁarine penetration., It is
necessary, in deciding what type of pétrol to carry out, to have aﬁi

estimate of the average sonar detection range. This range will depend

upon many different factors such as sea temperature and selinity, as

2
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well asithe sonar equipmeqt involved. Supposc a test is conducted every
few hours whose results follow rea:onably well a known probability dis-
tribution with the true average detection range as a paraﬁetef. In this
example then, Qi would be the true detection range and - Xi the test

result. One would not expect Qi and 6 to be unrelated, however,

i+l-
as the conditions fixing theixr value, while changing, are.changing more

or less continuously in time and a high value of 9i would tend to mean
a high value of 61+l as well. In this example, as in the previous one,

a decision about the true detection range will be made many times, and

the average risk 1s a reasonable criterion to use in evaluating a decilsion _

procedure.

B. Known results.

The problem of finding a good estimator is really twofold. First
some standard of optimality must be established, and secondly a procedure
must be found which yields good results according to this standard.
Samuel [11] has considered the following standard. Fix 8+ Let Gn(')

be the empirical distribution function of §n. That is

Gn(x) =-% (the number of i such that 6, < x) ;

Let [@i; 1 =1, ees , n} be mutually independent identically distributed
random variables with a priori distribution function Gn. It we novw con-
sider X, to be an observation of a random variable with the conditional

density function Py given that ©, = 91, then the usual Bayes argument

i

i s B
gives ¢i(§1)_= E[@ilxi] a8 the estimator achieving the minimum Bayes risk

R(Gh), Of course this procedure does not épply to the compodndweatimgyion

]




problem since Gn is unknown and in any case the 91 are not obser-
vations of random variables. Nevertheless Samuel has shown R(Gn) is
an "optimal" standard to use _in evaluating a procedure ¢ in the
following sense: Let Rn(g, d) denote the average risk for the first
n decisions incurred by a decision procedure @ against a parameter
vector 6. Then R(Gn) is an "optimal" standard in that if one considers-
" only the class of "obvious" procedures :(Qn: cpi(_)gi) = cp(Xi)

i=1, ... , n) then V¥n Rn(_g, 8 > R(Gn). In other words if one
bases his decision about Oi only on the observation having 91 as a
pa.fa.meter and uses the same zple for each 1i, one can) never achieve &
lower average risk than the uurber R(Gn)'

.Samuel also gives several sufficient conditions on Q, {pe: e )},
and @ which ensure that for each fixed 8

T (Ry(g, ©) - R(G,)) <9
and in ‘several cases she exhibits specific procedures which satisfy the
above condition.

Robbins [ 6] [ 7] [ 8] and Johns [ 3 ] have done work in the related
emﬁirical Bayes problem (see Chapter III, Section G) éﬁd manyrof the
decision procedures they derive are also "optimal" iu the compound deci-
sion problem. Extensions of their estimators will be used in later
sectiops;
Q. Summary of new results.

hs mentioned in Section B 1t is first necessary to establish a

reasonable standard of "optinality" to use in evaluating a particular.
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decision: procedure. Many reasons have been 2Avanced in the literatnie

for considering the risk E[(cpi - 8.} —%to-Le-awood indication of how
i - ) T -

well a particular deéision rule does. In the comﬁound decision problem;
it seems even more reasonabiqnto consider theravergge riskr Bn(g, 8) as-
a reliable index to be used in evaluating a~‘artiéular decision procedure
@, and this is ’fr,he,,inde): adopted in this paper. A stanaal;d R(’;@n) is
now needgdrsuch that if for a1l § and B! R(gn, gn)' is no greater than
R(gn), one would be willitg to say .91 is a good decision procedure. '
Samuel has given good intuitive feasonf for selecting R(Qn) = R(Gn)3 and
has mede the statement [11] that AR(Gn)i cgnnot,iin theAlimit, be improved
upon. Based“oﬁ an idea of Johns [5], a sequence of more stringen£ stand-

ards {Rk(gh): k =1, 2, «es ).will, however, be obtained in tli}s paper such

that Rl(_Qn) = R(Gn) ; and for any fixed k=1, 2, ... and for all 8,

Rk(gn) = Rk+i(§n) + £(k, n, 8) + h(k, 1, 8) where f(k, n, 8) >0 and

h(k, n, 9) = o(?ll) uniformly in g. In a3dition for "most” 9,

f(k, n, g')< isq in fact strictly pdsitive. Rk( _gn) will be shown to bg
the minimum Bayes risk’ﬁoésible_if in fact Qn -is a realization of an

n dimensional random vector whose last k components are independently
distributéd”fibﬁ tberfirst n-xk cémponents according to the rk
dimensional empirical distribution function geperated byv gn' The ©x-
tended compound e: Simation problem is defined to be therproblvm of finding
procedures which asymptoticalily achieve these standards. The analogou;
vrohlem in the empirical Bayes case is beinglconsidered Ly Barndorff- -

‘Nielsen [1]. To make these statements more explicit several definitions

are needed. These definitions will be used throughout the paper.

.
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Def. 1) Let Q be a bounded interval of the real line. Let

ﬁ"\r

T = (pez e} - be a family of probability density functions with respect
to some measure . Det [GJ' 93552 J =1, 2, 3, e J be an arbitrary ;.-A

sequence. Let ( j J =-], ?, A } be- & sequence of muiually tnde-‘-

pej.' Le.t -}-(J = (X ;

0,6 1 =1, 2, see Let °§q be Lhe vector con31st1ng of the first

... ’ X

i’ ‘n’

i~

n components of. 6.

th

Def. 2) V¥ 6, n,¥k=1, ... , n the k~ order empirical dis-

tribution function of Qn “is:

K ' L1
Gn(yl’ y2} ese yk) - n_ k+ l

(#0of § (k<3 <n) such that:

&

“Wheh k = 1 this definition yields the usual eﬁgi;feéi distribution}

T

function.

Let k and m be fixed arbitirary positive irtegers k < m. Let

{8,: 1 =1, ... , m}] be a sequence of random variables with range space
L B - T - .

Q. Let M

G  and assume the remaining ©  re distributed independeﬁt?y of @m.

. Let {X :1=1, .oo , m}] be a sequence of random variabl-- uith

conditional density functions p@ given ‘@i = ei sunb (70 . the Xi

are mutually conditionally independent g*v' n the’ @i ror estimating
the realization - 6 oL @m it is well known that the'estimate :
E[@ |x SRWETIRTTRPD ¢ ], which depends only on the last k observa-

tions, is a Bayes estimate and achieves ihe Bayes risk R(G).

). Let 6= (el, 92, ey e",' ..f;' . Y where .

.e =\.l, 2’ .."' s k) - 7

nek+1? ‘7 @ have an a priori joint distribuciuy,functionii
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Def. 3) Y6, nyVk=1,2, ... ,n

let RR(Qn) = R(Gﬁ) where Gi is the k% order empirical dist. bution

N R - k.
i i is the 8 rask [ G .
funct}on of 6 . Thus Bk(gn) is the Bayes risk for G/

_Using- the abovg definitions it will be shown in theorem .) that

X 7— ;__- A:v ) ..12~
f(k) n, 9) = E{[E(®k+]:,“—xk+l) - E(@k_*_l»,xg, oo 9 LK'*‘I)" ]

waere @

s e s ®k+l have the a priorl joint distribution functicn G

Tt is clear that fi is always non negative and will equal zero only if
E[@k+l'§k+1] = E[@k+llxéf vee Xk+l] with probab111§y ane., Pgls
condition is clearly satisfied for most T ohﬂyrff »gn 'generates'aﬂ :
o ot oty . k+1 '
empirical distribution function Gn

such that O, and @, ure

1 k+1 .

independently distributed. - It is not unreasonable ‘to suppose trat "few"

- = . <

arbitrary sequences, occurring in situations leading to thb{compound

- o

decision problem, will satisfy this condition, even as n approaches .

X ]

.2,

is that the sample serial correlation coefficient lag k + 1 of

o;o 3 X

Another necessary condition for E[§%+1I§k+l] = E[@k _

il

{Gi: i=1, ... , n) be zero. Again it seems unlikely that many
sequences cf Qi would hgve this property, egpeéial;y for small values
of k. In particular if 6 has repeated "pat;efnsf of lengt? greafer
than k, neither of these cénditions would be exﬁectgd to hold.
Accepting Rk(gn) as a staudard to be used in evaluating a dfrision

procedure @, attention is turned to constructing procedures for specific

classes T . and to evalusting these procedures.

]
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Def. 4) Let £i(p, 8) =R (2, 8) - R.(8). Thus &:(9, )
represents the difference after n decisions between the average risk
attained oy a particular decision procedure and the kth standard.

For many important classes 3T, including the normal, gamma, a
discrete exponertial family, and a "non-parametric” class, decision
arocedures 5& will be found and an upper bound B(k, n) will be given
such that £1(9", 8) < B(k, n) for all 9¢ 2" and such that
1im B(iz, n) = 0. For the discrete exponential family, which includes
?gzngeome+r1c, negative binomial, and Poisson families, it will be
shown that 3B(k, n) = O(l9%7z—) These results represent a considerable
improvement over those obta:inz=d by Samuel [11] who considered only the
case k = 1 and showed

E,'—nmmn(ip’ 8) -R(8)l<o0
for any fixed 6 1in a parameter sbace more restricted than that con-
sidered in this paper. If T is_the ciass of binomial probability
density functions, a decision procedure is obtained which attains a
1ower.averagé risk than previously known procedures, and O(;2%7E)

obtained as the rate of convergence of this risk to its "standard."
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il. Preliminary Results.

In this chapter we shall first prove that Rk(_Qn) = Rk+.l(-€z)
f(k, n, 8} + h(k, n, 6) where f and h have the prorerties stated
in Chapter 1. We shall then develop a general theorem and corollary

vhich will enable us to obtain specific decision procedures in Chapter III.

Finally we shall prove several lemmas which will be useful in Chapter III.

Def. 5; Let ¥, = (yi_, Yor =ee yn) .be an arbitrary vector.

. . k )
For k < n we cefine ¥, = (yn-kﬂ’ Ypogin? *° 2 yn).

Def. 6) v3, 6, Vk, n such that 1 <k <n let

s

p,  (x,)

1
Q(x) = —5——
n-)-ck n—k’fl.Z 3 jok+2

J=k £

6 ﬁ D (xz}

I g=1 O5oxse

2
2

1
Qx) = T+ 1

=

W
L) =

J

While both @ and Q* are functions of several variables which are

not explicit in the notation, it will always be clear in context what
arguments are intended. We note that Qn(lck) is the unconditional
density function of a random vector lk if the parameters Gl, cee ek
are assumed to be random variabies 61, cee ak with a priori distri-

bution function GI:I.




Def. 7) V¥ ¥, 9, ¥k, n such that i<k <n, let

n
6 P (x,)
Rlx) igk S gn PO b
Qn—()_‘k) = n if Qn >0
Z Pg (xl)
=k £=1 " j-k+8
k
"’n(-’fk) = 4
0 otherwise .
\

Let m and n be integers such that 1 <k <m, and n < =, then

k k, %2

tn(_)gl;) is one version of E[em[l(fl] , and Rk(gn) = B[ (Sm - *n(_)_{;l) ]
2 k 2

= B6 - (vo(xD))?1.

Def. 8) vk, J such that 1 <k <J let
Ky _ PRy
F e )1 - Bl (o(X;) - 6,)°]

where P(-) is an arbitrary non randomized estimator with a

k-dimeasional argument.

n
I .
vn>k let R(p, 8 ) =— k+lJ§kFJ[<P, g1

R(o, 21) is then the Bayes risk in using the rule cp(_.‘gl,) as an estimate
) : . . . . Bie
of ek when 81, cee ek have the a priori distribut‘on ('n'

We now compare Rk( _Qn) with R +l( gn) and prove:

Theorem 1) ¥3J, 6, k, n 1 <k<n<x Rk(_Qn) = Rkﬂ(_f_)n) + f(k, n, 6) +
n(k, n, 8) where f(k, n, ) >0 and In(k, n, 8)] = OHI) uniformly
in 6.

10
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Proof:
Let. El[-] refer to expectation with respect to Gﬁ and E2['] .

+
refer to expectation with respect to G]; l. ror any estimator q)(l(k'l-l)

R(p(X, ), B (0K ) - 8,7

= E ]-F[E(

AL k F1 Opry Kiay)]

+ B (B0, X 4p) - 05,017

which of course is minimiwed for ¢(§k+l) = E2[@k+l[§k+l]' Letting

q)(-)—(kﬂ.) = E2[6k+1l-A+]_] we obtain

]

Rk--n ‘:{k+1(9 ) = Rk(e ) - R(E [ek+llx;:+]_] 8 )

RAICACIRY: SR NCW ) o

Let  1(k, n, ) = El[Ey(8,, [% ) - By(6,, l—’iu)]el

h(k, n, _Q)

R(8,) - R(E L6, X0, ), 8)

. Then it remains only to show |h(k, n, 9)] = 0(%} uniformly in 6. But

since

Rk(-e-n) = El[cil - El{Ei[lezk]] and

o

R(B [0, Ko 1 &) = Bplog

k+l

.2
- EQ(E2[®k+, ka

11




and since Q is a bounded interval, say ¢ Q = |6} < B<» we have:

In(k, n, 0)] < |7 (&) - B (6, )| + |E (Elq, X, 1) - B,(E5la, X, 1]

and
n n
> 2 1 2 1 >
B8 - BE ) = TRy L % T wew g, %
n
) 1 i 2 N
“"{a-x +1){n - k) J=§+1 6,} + (n k)ek
2
B
< n-k+1
Also
2
CNEACW: SRR RCACWIY: W b
(3 Tk )
6 P (x,) P (x
) 4 jok 9 ic1 Oy 2| gek g1 Ogexer f
- 31: ) n-k+1
k ) (x
RO\ 5=k =1 Ogxes %
6 P, (x ) P (x,)
yeirl 9 ge1 Ogaes U] gkn £=1 Ogxes L ) u(ax )
RN (x,) "k T
P x
J=k+1 £=1 6;)-k+/z £ }

For fixed the expression inside the braces may be written as
Xk

2 2 .
a.n+a. bn+b -an bn
b +b] n-k+1 b n-xXx

n n

12
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i
!
i
!
i

L x
n k k
vhere a = Z G,j F Py (x,) a = ek H Pg (Xz)
j=k+1 £=] Jj-k+£ £=1 z
n k k
- ' = !
bn - . Z —[ pe (xz) b = _[]_ pe (xz)
j=k+1 £=1 = j-k+2 £=1 4
and
2 2
an + a bn + b ) il_l bn
b +b] n-k+1 b n-x%k
n n

(n - k)bn(an + aL);2 - (n-k+ 1,‘(bn + b)ai
(n - k)(n - k + D(bn + bTon

’ n ! nn
(n - k)(n - x + lﬂbn + b)bn

{n - kx)(2b a a +baz-ba2‘:-ba2-b32!
n n n n

From the definition of & bn’ a, and b it is clear that

a
"l <B |g/<B b >0 b>0 s0 that
n

2a a

n
b +Db
n

2a a
, n

b
n

a'n
< ’b—’
n

15
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Thus we have

|5, (21, X, 1) - E,(Eale,,, IXS, 11

LBb B(b +b)
n-%k+1 r-k)Tn-k+l)u(dxk)

Rk

=n-1+1f(n pe(xy,))”(dlk

2
"Th-Rm -k ij (ﬁl Pez(xz))u(ds_ck)

oW, B° B
" ne-ek+1 (n-k)(n-k+l) n- Kk +1

1k
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H
H
i
1

78°
Hence In(k, n, _Q)' S-ﬁ—m—i .

Q.I,D.
The implications of theorein 1) were discussed in Chapter I. We now

state and prove a generalized form of a lemma of Samuel [11].

Lemma 1) ¥ 6, k>1, n>k

n
TR & BV (X)) - 0] SR(9))

Proof: Fix 6, k, and n. Using the expressions F J(w];, _Q;{) and
k . k .
R(\yi, _Qi) given in definition 8), and observing that R(\yiﬂ, _Qi) > Rk(_Qi)

Wwe have:

n
s Y ORI - 67

-k +
nkli:k

l

n i i-1
_ 1 1 k ky k !
n-k+1 1§< It Jgk Filve g Ji\:k F3lve g]‘;)-l
L __ ¥ '(i;.k+1)a(k 6.) - (1 - RO, o )}
Tn-k+ 1.5 Vir & i’ ~i-k

n-1

1 k kK k
= =53 igk(i-kﬂ)[R(wi, 9.)- ROV 4> 8)1+ Ry, 6 )

SRS, 8) =R (6.

n n

Q.E.D.

15
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k Xk
Def. 9) A decision procedure 9}{ = (Q)l(Xl), (pg(_}gg), cer

k . . . th .
cpn(g_(r), ... ) is asymptotically optimal of k order if
- |1 - K 2
ve Th LT H(e-0)% - Rs)|s0.
n— w i=1

. n
If 1im {sup 2 ) E[(cpl.{ - 9.)2] - Rk(e ) }< O then Qk is
n -~ i =n -
Ti— _Q i=1 -

ur. iform.y asymvtotically optimal of kth order.

We shall now state and prove a general theorem, which with its corollary

will enable us to obtain the results of Chapter IIT.

Theorem 2) ¥ bounded interval Q = [, B], tamily of densities T, and
integer k > 1, let Qk be a decision procedure such that ¥ i >k
P[cpi()_(i)eQ] = 1. Suppose there exist non negative functions gi(g, g_ck),

{;i(g, _)_ck), and ai(_Q) such that v 6, x, 1>k

a) Pllos(x,) - *(x)] >¢€,(8, x )X = x 1 <t.(8 x)

. |
b) 1lim {-}1 Y ElE, (8, X + £,(8, XD)]Q, (X)) > a,(0)]

n— o i=k
1 o & |
+20) Ple (X)) < ai(g)]} =0
i=k
uniformly in 6

where the functions Q,i and Wl; are as given by definitions 6) and
7).
Then the decision procedure Qk is uniformly asymptotically optimal

of kth order, and moreover

16
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ST ——

Lk LB ek B A

Pk(k,)-,<(ksl)(ﬁ-u)2;2(f"o‘)%E[ + (B -a)g.le, >a]
_n‘-‘P;;)_ = + = IZ:K gi gl 284
2( e 2
L2B -)° Y PiQ. <a,]
1 ik 1 1

where Si(gk, 8)  is given bty definition 4%).

Proof: Clearly it is sufficient to prove the upper bound for €i(9k, Q)

is correct.

. ! . . .
We first represent S; as a sum of several functions, and then examine
each of these functions. We shall corsider kx and n fixed.

Let:

B (9% 0) = 3 L silo] - 6% - R (D))
n 2
(e, 8) =3 T (El(9; - 6,)%) - BL(¥ - 6,)°])

n
Hy(g", ©) = = Py (EL(vS - 0% - R (6)) -

For the remainder of the proof we delete the superscript k. Clearly

1 ¢ 2
e e, 8) =< i:;l E[(p; - 6,71 - R (8)

- H (e 8) +Hy(e 8) + Hy(g, ©)

Let B=(p-a). Then E[(o, - ei)g] < 8% and R(8,) < B°; hence
2
B, (9, 8) 5-(-15—:?1-1—)1-3— . It follows immediately from Lemma 1) that

HB(Q"Q) < 0. It remains only to examine HE(Q, 6).

17
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n
By(e, 8) = 3 L Bl - vy)(oy + vy - 20))]
2B
ST iz:k E[,CPl = Wll]
2B
<= .Ek min [Ef|e, + B(,[], B]

2 n

n .
i=k

2B+ 2B
<5 igk Ble, + Bt lQ, >a,]P[q >e,] +== ¥ Plg, <a]

The desired result follows immediately.

Q.E.D.

Corollary. If condition b) of theorem 2) is repiaced by

b') Llim E[g (6, X) + ¢,(6, X1 = 0

i

uniformly in 6

then ‘Qk is uniformly asymptotically optimal in the kt}1 order,

- Proof: From the

1im (sup H (@k,
2\ %
n-» co (2]

proof of theorem 2) it is enough to show

68)) < 0, recalling that H2(9,_Q) is a function of n.

18
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| But H,(p, 8) <= } Ello, - ¥,]]
; i=k
2B o k k
4 & = w
i=k
- 0 wuniformly in 6 as n - since uniform zonvergence

implies uniform convergence in Cesaro mean.

Z MRS SEenatie

Q.E.D.

el

We turn ncw to several lemmas which will be useful in Chapter III.

i lemmas 2), 3), and 4) will be used to establish condition a) of theorem 2),
1 while lemma 5) will be used in evaluating certain limits.

§ The first of these is an inequality proved by Hoeffding [2 ], which

we state here without proof.

Lemma 2) I X

<b

«ss 3 X are independent ana a < I
n < —

1’ Xe’ i

for i=1, .. ,n then Yt >0

*

2

t
.
P[|X - E[X)] >t] < 2e n(b’a, ,

19




Lemns 3) Let L 0<X,<b i=1, ..., n be

2’

a sequence of random variables such that for some k >0 and

vi=1,2, ..., k the random variables Xi, xi+k’ xi+2k’ ... are
mutially independent. Then
_ ng 2
= -_ 2 (n+ 55
P[|X - E[Xi] >8] < 2ke X\7*K
n
Proof: Iet S, = 5 X, .. wkere m 3is defined as the integer such
1 J:__:) Jk+i
n n = —
that i 1<m§i-( end X, =0 for £ >n. Let 7i—E[Si]. Let
o}
A = «vent |S, - y.| >5. But S, is the sunof m+1 independent

randon variables and from iemma 2) we have:

i
’V
%
™Ma
>4
C
s
.
[
]
~
H_
=S
| SR |

P[Ai]

20
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So that:

1% - 381 200 = 2 £ (5, - 7)) > 0]
i=1l

|
)
c
>
| S|
IA
M=
g
H
>
Snd

Q.E.D.

Lemma !-) Suppose for non negative random variables XJ , X2

P, - u,] 38115‘1 i=1,2; u >0, 4, >xo; and B# 0 is any
number such that — < B < ». Define W = min[<= , B] (it X, =X =0
p.a— X2 1 2

we take W = 0). Then

p[[w-—] >1 (8, + B5,)] <)+,

21




S 2
Proof: ‘s rirst show |[W - :-il 5:;—2 (’Xl - ull + B|X2 - 3‘21)

Case i) W< B. If X2 =0 then X, =0 and

- uy| + BIX, - )

X, #
Lo - 2 =X, - w)X, - (X, - w)X |
X2 u2 Xauexl 172 2 2’71

<L

— ‘12 (lxl - “ll + le2 - “’2|)

!

- Then Y#0 and Y>X,.

Case i1) W= B. Let Y= o

From this fact we have

X, - w ] <8 and |X, -m) <

22
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|

and

P[|w--p—l| >—-1—(5 +B8)]=1-P[§W-E-l|<-];(8 + BS,)
|12 —-pe 1 2 ’ u2 u2 1 2
<1-P[ix, -n| <8 end |X, - i, | <8,]
=P[le - ull 25, o |X2 —u2| > 8,]
=6 te
Q.E.D.

Lemma 5) Let F be an absolutely continuous distributior:

function with corresponding density function f. Let
¢y = (x: |[£"(x)] <M and £“(x) 4is continuous). ILet

D= {x: |£'(x)] >0). Let:ye(=, =).

i) T€ there exist M < w €, >0 such that: yeD and

[*:y5x5y+eo]ch then ve 0<e<e¢,

yie
1 T PRS- |
-Eff(X)dx=f(y+pe) with |p - 51 <5ET ¢
v

11) If there exist M <w €, >0 such that: y«D and

)

(x: y-¢ Sx<ylcC, then ye 0<e <.

y
1 i B 1 oM
. f(x)dx = f(y - pe) with |p - -5_| S3FHT ¢

y-c

N
N

- - —— [ ] =



Proof: Using the mean value theorem and the Taylor expansion we have

in case i)
yie

1 [ e(x)ax = £(y + ve) = #(y) + £*(yve + L)1)’
y

where 0< p<1l and y<x¥<y+e.
But:

yte 5

% j f(x)ax = Z(F(y + €) - F(y)) =% f(y)e + —mfle 2+ I ’6‘ [
y

where y <x' <y + €.

Thus

2 2
. £"(x*)(pe)” _ £'(y)e . £"(x')e
£'(y)pe + 5 =g+ "’Lél_

> (- Pt - [Z) - 200 52,

> Jp- e <

4 et )

1 1 M M __2Me
= Ip'§lflf'(y)|(3+§)€'3.1" y

" The proof in case ii) is similar.

Q.E.D.
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III. Main results.

We now turn to the task of finding asymptotically optimal procedures,

bounds, and rates of convergence for specific classes of distributions.
re shall alsc look at a modification of our problem in a very general
class of distributions. Finally we shall consider the "empirical Bayes"
problem.

The notation we shall develop and use is inherently cumbersome; to
ease its burden somewhat we shall not always indicate all possible
dependencies and shall not always indicate one or more of the arguments
cf a function. Hopefully no misunderstanding will arise because of this

practice.

A. A special discrete class of distributions.
We first consider a special discrete class of distributicas defined

on the non negative integers as follows:

P[X = x|6] = py(x) = gn(9)z(x) x=0,1,2, ...

where: i) 6eQ = [C, B] 0<B <« h(B) >0;

) (X
ii) Thera i * . _Tﬁb_l_j *
ii) Thers exists M* < » such that: V 6e Q EG[ XTI J <M

iii) There exists M' <o such that v i, j =0, 1, 2, ...

such that g(1i) g(J) # 0

[



iv) If B <1 then there exists a constant b such that
g(x) < x° for all but finitely many integers x.
If B >1 then there exists a constant b such that

g(x) < ~L - for all but finitely many integers x.
- _x=-b

A1l of these restrictions are quite mild. The third prevents g from
oscillating wildly as its argument progresses through the iniegers. The
second and fourth conditions restrict slightly the rate at whieb

6%g(x) 50 as x .

Examples of such a class are:

Typ2 6 n(e) g(x)
-5 1
Poisson [0, Bl, <= e o
geometric [0, 1,8 <1 (1 - 6) 1
-6 a> + -
negetive [0. B],8 <1 (1 },a2>0 atx-1l
binomial ‘ a assvmed known x

The conditions are easily seen to be satisfied.

Recalling that x. = (Xyp41r == » %) J=0, K41,

dJ
-(l :lf}fk=3_c.k

we define: YJ(_J_Lk) = J=k, k+1, eee

0 otherwise

i
Pi(zk) = T:—ig]:_:-i J§k YJ(EK) 1=k, k+1, ¢e°

26



Mo deaecd 4 h o om m an

XTI NN

. (g(:’k)Pi(xl’ Xy oo s Xy y Xk + 1)
: glx, + 1)P,(x,)

PH(x ) = {

if g(xk + l)PJ._(;_ck) >0

0] otherwise

3 Sobia hoatioass
-

1=k, k+1, o

v,

SR RN 1 G

(

eI pey

if i=], oc-,l{"'l

: k . .
* Px) - PHE) 12 o<BE) <P 1=k a1, o,

il

\ B if BSP*i"(J_Cl;) 1=k, k+1l, cev

Theorem 3) For the problem defined in this section
i _ggk = (Cpli, q>12(, see ) is uniformly asymptotically optimal of ktn

k Jork n
order for k=1, 2, ++« , and 6:1‘1(9 ,0) <B(k, n) = 0("-’J_/‘rr)-
o

Proof: We shall show the conditions of Theorem 2) are satisfied.

Fix k. Fix 6.
1

1 :
Recall Q,( )::—-———-—-—--—Eﬂp (x,) 1=k, k+1, -
— - + (] ’ ?
P30 TTR L 5 4L 0y,
We observe that there exists a set lf{:.L in k dimensional spacc such
that P[.P_C‘zeRi] =1 énd lckeRi=>g(xk)Qi(_>§k) > 0. We then have
J_r.keRi=>g(xk + ]_)Qi(z_;k) >0. ¥xeR, we know from detinilion 7)

that Y i > k:

a7

[



i k xz
K JZL ’s ;Ql ej‘k+£h(93'k+2)g(xz)
‘I’i(_)fk) = 1 x
2: 93 ket g )80 )

J=k £=1

g(xk)qi(xl’ Koy eee 5 X 10 X +1)
elx +1)q,(x )

We now consider the Y,'s. Since the X,'s J =1, .0. , 1 are

J J
independent it is elear that vlck, £=1,2, ... , k, the random variables

Yg{.’_‘k) k(xk“ , £+2k(3§k)’ are mutually conditionally independent
giren l(i = X Also:
E[Y (xk Xl:,: x P[X’kz xklzCk

= P (x,) J =k, ... i-—f{
)31 O ks * S

0 < E[Y (xk)lxk ] <1 J=1-k+1, vee, i

kg(xk + 1)

Now VxER V(e 8y) 2Tt A

ve have, using lemma 3):

28
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Pl|a(x, + )P, (x) - alx + 1)Q,(x)| >8,%f = x,

i
s P['Pi-k(-’fk) SRR I ey S MR A EW

J=iek+]
1 y ° (x|
T=2KF 1, 50 44 Paj_k+z s
5 (1 k + 1)
_“(x +1)11—2k+1)|xk ]
) (1 -k + 1)
h P[lpi,k(lck) 1.. (xk)l - gTik + 1)(1 - 2k + 1)
B 2k + l)'xk
3, (1 -k + 1) T
. 1-2k+1 X
< 2k exp{ k{'i“:—f"‘—)'L Lgrxk + 1)(1 - 2k + 1) " (3 - 2k + 1) |
Iy 26°(1 - k + 1)
. 1 = :
zekexp{g@karl) ) kg2(xk+l) }

kg(x,)

i) zm we have:

By 4 similar argument V-J-(-kERi \4 €i(£k; e

Plle(x )Py (x;) coo o Xy g0 X +1) - a(x)Qy(xs wee y X g5 X+ 1)

be, _ eef(i -k 1)
elx,)

k
2 €i|?ﬁi - —}Sk] < 2k exp 2
k g (x

a9

k) T

t




We are now in a position to apply lemma 4) to obtain the functions

£, and [, for cordition a) of theorem 2), If we substitute in

“emma, )
W= 9y (X,)
p’]. = g(xk)Qi(xl’ sec )ﬁ(-l’ xk + l)
uy = 8ls, + 1, (x)

Then we have ¥ 1 = 2k, 2k + 1, <.,

K ox . €1t P8y _
P[ICP:'L -l 2 G, (x)elx, + 1) '-}-8; - 3—‘1:]
Eei)( i-k+1) le i 26?( 1-k+1) L3 i
ke (x.) * 8(x) . P(x +1) ¥ glx, *1)
< 2kle x te "

Recall the above inequality has been shown only for _J_ckeRi y 1 2>2%,

kg(x, + 1) ke(x)

ZTTXTT TR+ i uld not’
12T TR T T 42T 5 1 ¢+ If eny of these cond itions shou

5

hold we shall use the trivial inequality

k ] <1
1

k
IEOI.}Si'Ek -—

P[lcpli‘-w

30
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b
}
:
;
3
_§

+
€i BSi

b T T e, ¢ D)

2

. {"ei LB p(i-x+d) g L0 )}
exp ﬁ(xk) g(xk +1) k gz(xk) SQ(Xk ) :

(Ve
|

We have now produced the inequalities fo: zondition a) of theorem 2).
We must now choose functions Bi(_)_ck, _Qi), ei(ick, Qi) subject to the

conditions thav

k g(x +1)
I S S U Tl

k g(x,) )
G ST-w+1 — 479

and show that for Qi and some a, condition b) of theorem 2) is
satisiied.

We first prove the following lemms.

Lemma ¢) For {pe: Pec 0} defined :n this section Yk =1, 2, ...
Ve 0<e<1 there exists a constant M = M(e, x) <® such that

V_QGQW,V n=k’k.+l, cee n?‘l

n i k
> P [ 3 ZH Pg (X _yig) < ie-l < Mn® 108" a
isk  Lj=k £=1 j-k+4 ]

31
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Proof. We first cornsider the case k¥ = 1. Let

¢ =

d be the smallest

integer such thet g(d) £ 0. vym=4d4, d+ 1, ... , V¥ 90

(<]
>opglx)
x=m .} & (x
96(m5 <o g(m)
« d-l
- 7 gly + m) ¥ (y + m)
= ¥ s'n(e)ely) ¢ 8L
L
y=d n(5)e(y)g(m) y~o g(m)
"
—~ where M' <= from condition iii) and the
— Ly

easlly verified fact that h 1is a decreasing function.

Also it is clear that ¥ & tlerc exists a smallest non negative integer

i
m_ such that .Z; PG,(mi) < if.
J=1 J
4
1 if a<hb
Let I(a}b)=<
0 otherwise .
\
“hen:
n i ; c n o i c
Y P, Y p{X,)<ij= Y }:I Y v, (x), i |p, (x)
. I, 6.1 e, 6,
i=1 <5=1 7j i=1 x=0 J=1 i
n 00
< Xy zpe(x)
i=1 x—m,L

M %
< p, (m,)
) 5 Gi i

32



i i
Nov ) Py (x) = ) 6"n(8,)e(x) < 1#™n(0)g(x) so that if
=10 = 4

B h(0)g(x) < 1" then m <x. But B*H(0)glx) > 1

=>x log B + log g(x) > (e - 1) 1og 1 - 1og h(0) .
If B <1 then we have from condition iv) that

x logB + b log x > (e - 1) log i - log h({0)

=>x<l"‘[1ogi+1°5h(°)+bl°3x]
- 1-¢€ l1-¢€

=> there exists M™ <® sguch that x <M"log i for 1 >1.

If P >1 then we huve from condition iv) that

£ b . At s P R il o bt B s

x logB - (x - b) log x > (e - 1) log 1 - log h(0)
= x(log x - 1log B) < (1 - €) log 1 + log h(0) + b log x -

But x2ﬁ2=>10gx - logB >1loghB

2 1- ¢l log n(0) . b log x
i so if x >p # 1 then also xSlogBllogi+1—e A el

1-¢l . log h(0)' . b log x|
If =1 then if x > 1 also xSlogxllogl+ l-c¢ * l-e__!'

In each casc there exists M" <» such that x <M" log i

for 1 > 1.

35
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Let M, ble the smallest integer such that M, > M" log i for
“ M
1 >3i. Then 8 ih(O)g(Mi) <151 and hence m, <M.

=V} fer v=1,2, ..., M.

Now let

IV = [1: i = l, 2, eece n and llli

Let iv be the greatest integer in I\" Then

n h! n
M" \
P[}jp(x.)<1€]< Y p, (m,)
Z s 93 i —hi\Bs 15 Bi i

M" o
“WE) ~ Y % (v)

v=1 ie v i

M

) n
<o ¥ (i )€ from the definition of m,
- h(p v:l v i

M"Mne €
< NE n <Mn logn .

This completes the proof for the case k = 1. We now consider the case

k > 2.




where m, is as defined for the case k = !, We shall now consider thé
two bracketed parts of the right hand side of the last equation separately.
The second bracketed expression is clearly seen to be less than or equal
to M*n© log n for some M¥ <o by the argumerc used in the case k = I.
The first bracketed expression can now be bioken up into k expressions,

k - 1 of which are less than or equal %o Min© log n with the remaining

expression being

IR ‘i{*l[ﬁ o, 0 | zljl L

i=k x,=0 xk=0 =k £=1 ~ J-k+£ i-k+£

But for each (k-1)-tuple of possible values (xl, Xps eee s xk-l)

i

either I [ Y ﬁ Ty (xz), ie] is zeru for all
J=k £=1 ~j-k+£ 4

i X = 01, ..., my - 1 or there exists a non negative integer

u oo oo Sy bn st b+

ak,i(xl’ cee xk_l)Smi - 1 such that the indicator is zero for

k

same argurents as in the case k = 1, for those (k-1)-tuples

. x =0, 1, «.., ak’i - 1, and one for x, = 8,50 We may now use the

(xl; ees o xk_1) such that the indicator function is not zero for

X =905 1, ¢es , m -1, to show that

; n M-l ri ok .
Z z I L E ﬂ pp (xz)) i ] ﬁ b, (X[)
1=1 050 Lyske £=1 7 jokes g=1  i-k+b
i 0 .

25
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Thus

n ml-l ml-l i *kr E YI%

Z S : Z 1 E i D ()*o)) 1cf : Py (XE)

i=k x,=0 xP=C a=k £=1 ~j-k+i 4 g=1 ~i-k+F
1 Mn Mn ml-l 3 *1; e_; ¥
1= = = = -3= = i-K+ -~ = -K+
i=k Xy X, 1 0 Xy 0 j=k £=1 ~ j-k+& £=1 “i-x+’
Mn Mn M" Mnn€

= b'e Z:O N Z: h[B:
1 *k-1
M (M )KnS

Upon compining the above result with the previous k inequalities we

nave the desired conclusion, and the proof of the lemma is complete.
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We turr now to the task of chowing condition- b) of theorem 2) is
satisfied for a suitable choice of ¢ 5 and Ci' The theorem will
then give us an upper bound for 8:( gk, g) and wve shall then see it

has the claimed rate of convergence to zero. Rccalling

i
1
Q— - Z‘kpa (X_+) 1=k,k+l’ooo’n
i i k+1j-kl= J-k+4 1-k+£
1/4 n
and defi.ing a, = {}) we have from lemma 6) B Y PlQ, < a,] <NI log _n
i n .~ i i’ - 1

i=k n
Gi + [381

2
2¢ 1( i-k+1) €

+4 + ey
i) O ey R
and §, =2k {e + e ]

for arbitrary functims o 4 8and ¢, such that
5 5 kS(Xi + 1) , kg(xi) J
1 F OB 2y & F O e 27Ty
3 log 1 X
l Tet 1 Dbe the smallest integer such that > -
(o) fi— - 5 =k +1

s o
‘1 o

and such that 1 > 2k.

57
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Lo let g(Xi + IL)Q,i log 1

1
= +
1‘1/:“ if Q,1 >———7Eil i io, io 1,
5, = (
0 ctherwise
\
( &(x,)Q; log 1 1
= + ee
11/7* if Q’i >—7Kil i 10, io 1,
€ = ﬁ
0 otherwise
\

Then Vv 1210

- Gi 1 T [ 1 :| ;
= [Qig()(i 7yl 2 117EJP Y 2T

e(x,) .
logiE[ i 1

pn sl ey U ;f/EJP[Qi 3’{175]

LA X 4

< M¥ 'l_g?!}_i since from condition ii)
i

e(%,)

8 “
A o i ~, l I‘ l - ]O i
Abse B [Qig(xi TS 2 i17I£] Flo, 2 i17’I_] SR

!
i

1]

Bt [Qy > o, IP[Q, > 8] <2285 [wx +p]

38



Using the definitions of 8i and €, we have

'h Q, log i 2 ¢%(1i - k + 1) log? in
£, = bk exp = - 2 |
* Ly kvi :
whenever Q, > 1 Thus
SV
r 1 . . 2 .
- 1 ipl 1 Y log i 2(i - k +1)log 11
SR v 2—17171 S bk exp [ i/ K ]

noting Qi < 1.

Coli.cting terms we see that condition b) is satisfiec and

2 n
X, k (k - 1)B° 2B [. _ A log i
bn(.@ ) 9.) .S n + n i_lo k + (M +F ) 1=§ il 7!|

o

_ 2(i-k+1) 1og2 i, 4 logi
n ki il71¢
+ 4Bk ) e :]
i=i

(o)

k

2B2M lo n
* gy

n

for all 8e 0.
We have now given an upper bound for 81:1 (9, 6) for all n, and it
remeins to find the rate at which this bound goes to zero. Exauining

the various components of the upper hound we have

L= DB L of3

39
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2B . - o3
and: n Vo T k) = O(n

2(d-k+1), .2 4 log 1
8B2k n ki il 1
Viooe = ot.)
n .-, n
7o
2B2M lggk L logk n
nl7h nl .
k logk n
Hence Si(g , 9) = O(—;i7ﬁ—) uniformly in 6.

Q.E.D.

We observe that the sum of r independent identically distributed
random variables, each with density function pe(x) = 0™n(6)g(x), has
the density function fe(y) = Gyhr(e)g(r)(y), where g(r) is the
r-fold convolution of g. Thus the density function of the sum has
the same form, and if conditions ii), iii), and iv) are satisfied for
g(?)(y) then theorem 3) may be used even if the original problem is
modified to allow r independent observations for each 61, observing
that the sum is sufficient for 6,. For the geometric, negative

1
(r)

inomial, and Poisson families g satisfies the conditilons.

4o
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The modified negative binomial distribution.

[a + X 1
{
\

SRR BV

x=0,1, 2, «o. 8a>0 08 <B<w.,

This reparameterization of the negative binomial is of interest for two
reasons. First Vy a,E[XIG] = 6 unlin> the usual parameterizaetion.
Secondly the form of the decision procedure is different than that

usually encountered.

In this and the following sections we shall not give as many
details as in Section A. The method of proving asymptotic optimality is

similar in each of these sections, and may be summarized as follows:

Q¥(
Since V., (xk) = ——Téiy when Q. (x}) >0, we seek an estimator

1- xk)

k . . 1" " 4 3

¢i(§k) which is for "most x, equal’oa ratio T:(:_T , such that
™ B = = *

L[P._ (_)gl.‘)lfi‘ }k] Qi-k(l‘k) and such that E[P (x )|x 51:]
k, k). Ten using the methods of Section A the functions gi

and C may be obtained for condition a) of theorem 2). It is then

only necessary to show either conditiion b) or b') holds.

41
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Let:

AT
T(x) =
O otherwise
\

a+ i -1
a ) i=0,1, ..
) i
g(’l‘)j)—‘a_gl,'.‘.)__l
A | 1=1,2, ...
( g(xk, t) if there exists t =1, 2, ... such that
_}_(15 = (Xl, see x-k."'l, xk + t)
ZJ(>_CK)=4
e otherwise
\
1
L Yy(x)
P (x ) = 4K
Ml ST R A1
S
L *'J(?Ek)
P (x) = 4K
S O Sy R
P (x.)
(  iV=k p
PH(x,) - {
6] ctherwise
\




R T U I VR VDT RN TP APV

- i S TS oL

i,

-B,-) if 1=1, 0. , k - 1
(pk(X)-—- P*(Xk) if O<PHX,) <B i=k,k+1, ...
iv=4 ﬁ i‘=1 = fiv=il = ’ ’

B8 if B<P9i‘(_i) 1=k, kX+1, ... .

\

Using the above definitions we shall show that _ggk = ((p};, cplg, cov ) s

uniformly asymptotically optimal of k" order ana 81;(91{, 6) < B(k, n)

k
lo n
oot
1
n
i k
1 /
Recall Q. (x, ) = ———= H P (x,)
1'%k 1'k+lj=kz=1 ej_k% 4
1 i
Q’F(_)=.—~——29.ﬁp (x,)
TR TTIR L 500 ) Py 4

We observe there exists a set Rj. of k dimensional vectors such thsat
— m >

P[g_(li{eRi] =1 and _}_LkeRi=>Qi(_}_;k) > 0. Thus for i >k and _g_ckeRi,

. Qx(x,)

Wi(_}gk) = W . For 1i>2k, xeR, J=k, ..., i-k we have

it

‘ k
E[YJ()_cli‘)l}_c‘i‘ =x1=1] »n (x,)

48=l J-k+£ °

b3
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) [ 3 T
E[ZJ('_i) ’E_.] = '}—LK] = L:_]_ f:( X 1)}:’9 (}‘l_ + t) j—ll J }r+£(—“z)
But
0 at+x-1 a |8 6 xt+t
t§1 sl Wpgix * ) = c§1 1 « at 9) (“ ¥ 6)
© e t

= me(x) tgl — 6)

= 9p6(x)
Hence:

B, (X)X} = x,]

17'=1

i-2k+1 1 i <
" ToerT Yl TR J=i§+_]_“[Ya‘ﬁ)|§ = X
B[R (X)) ]XF = x. ]
i-2k+1 1
= 0 q} e B[z, (X0)]x; =
TIE T 1 1"‘(5")+1'k+13-1§<+1 5(X )i

The remainder of . . p-oof follows that in Section A).
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C. The binomial distribution.

Let P[X = x{9] = py(x) = (i)ex(l I e

x=0,1, ... , a where
a 1is a known positive integer and 0 < 6 < 1. For this family it is
necessary to modify slightly the definition of asymptotic optimaiity.
Robbins [5] and others have demonstrated why this modification is neces-

h

sery. lLet R a( gn) be the k" standard as defined in definition 3)
>

with the parameter value &. We shall develop a procedure g# such that

c) Tim (sup [Rq(gk, 8) - R a_l(_gp)]} <O0.
noyo @ : ’ -

Such a procedure will be said to have property c). In addition‘we shall
show Rn(-Tk’ o) - Rk,a-l(gn) <B(k, n) = O(L:%E, uniformly ig 6.

We shall iirst exhibit a procedure having property c). We shall
then introduce a new procedure which not only has property c) but for
most 6 actually improves upon the original procedure at each stage and
produces strict inequality in equation c¢).

We first assume that corresponding to every obr=rvation X we have
available the related observation X' which would have resulted had we
observed & binomial random variable with parameter a - 1. For example,
if X 1is the number of successes in a independent Bernoulli trials
with Probability @ of success, then X' 1is the number of successes in

the first 8 - 1 of these a trials. While in most sitqations this

assumption will hold, we shall see later that it will not be needed.
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(
! oo o ! i = O
x X! aip? , xi) if v
-i,v
fy 1 : =
‘.\xi_kﬂ, cee s XI5 Xi) if v=1
(e
1 if X500 =_)§k
Yj(zk) =
C elsewhere
\
. _ 1
xk+l if _}fg,l (xl, ”"xk-l’xk.'")
Zj(zk) = ﬂ
0 otherwise
\
i
g fj(lck)
Px) =TT
i
2 250x)
P (x ) = =X
i/ “a(i-k+ 1)
f,\
P.(xk)
1 —
if P.(x,) >0
Pi(lckj 1'%k
Piigd = ¢
0] otherwise
\
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.

]
—_,; if i = l’ see g k - l
Koo y _ .
cpi(ici) = \ P’{(—i,o) if o SP;(_}SI;,O) <1 i=k, k+1, .
; vK T
\1 if 1< P;(._.i,o) i=k k+1, .

R k
We shall now show @ =
proceed as in ihe previous examples, noting that thourem 2) is still true

when the propzriy of asyupionic optimality is replaced by property c).

4 ¥

|
"
+

For ‘zkeRi we havg for the

—x
i-k+1 3=k

\Irl;(zk) =

o %s[ a-1 ex‘ (1 -3...,)
J j:]_ X‘ J-k+.¢ j*’x('!‘!

i k

i ia - 1 a-l-x
T Jgk }.-_1-1 ‘ Xy ) - k”(l i)

v dimensional vectors such that

=1 and X €R, = Q()ch)>0,

parameter a3 - 1:

,a—l—xz

Q,;(x)

7

k 1
((pl, Q)g, <.+ ) has property c¢). We shall

¥ e Watow
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Now for * . v. ..e & L - K
] e AR a-1-
=Ty (MY 3 5
[‘j().)'_‘ - ] ot . j-l:+£(l ]-1'+))
Y 2 -,}‘L fart
a.“q(_‘i‘.:)'_i* - ]
S—1 :
a PR S =3, -1 k=i ;a - 1 ey :
= + ) = (1 - . T o - \
(Q; \ 4o J ( © |) }_]-. (- } 3—’.-:-1-3(] J-ktg’
Ve i Uy S
- ;% fa - ngxz ‘- )a—l-xz
J [’:’\ } J-k+e J-k+2
£

Thus arguing as in Section A)

T Fa
- 1-1-.+1)¢i-f£+1+15 _

P{Mﬁ‘(&) - (x| 25;(15{7 (8, + 3 IEE - g_ck—! < ke

k
5 —
for i > T2 1

We now look for an upper bound for the guant.ity

n i Fk
. H € . v .
I [ z: ! Dy (Xi-k+£) <i ]. We shall show an upper bound ls
i=k J=k £=1 " j-ktl
(a + 1)"nc.

n 1 k
€] _
1;1{ F L;K ![__[1 pej_k+l(xi-k+£) <1 ] =

L3



. o

PO

a [

A b

. g

a 5 n * k y
= XEE) I [ y [ » (x,), i P (x,) .
xz:o 'Z; 3=k ng O5-k+s 2 ’ J Jll Oiker 2

=

For any fixed X X, = O, 1, v , 8 £=1,2, ... , k. There exists

a subsequence of integers {iv} {poseivly finite) such that

i Pg (xz) <ife i-= i, for somz v -1, 2, ... . Let
j=k =1 °j-k+i
i

= 0. But for all n 2 k there exists a Vn such th~t

i <n=>v< Y and:

(xz) < is < nt .
i-k+4 n
Since there are (a + l)k different -’fk to sum over, we have shown
the claimed upper bound holds.

It is now easy to show, using an argument similar to that in

Section A, that an upper bound for Rn(_cg, a) is

k-1.2,. b 2 1mg i
n +n(lo-k)+3.z 1/%
l~=lo n

n
o 3 e[t skt 2]
i=1 i ' :

N 2(a + l!k
1

n
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and cleur o 7uis upper bound is uniformly of the ordsr Y fte

desired s oelusion fullows.
In the ehove procedure we chose at times to negicct the results of

th RTINS , . . .
the "a = triail" in meny of the observations. This choice of which

informatior io neglect was quite arbitrary, ani it 1s easily seen that
the abcve prooil does not lcopend on which trial's information was neglected.

We may thus coneclude that if in some situation the related observation

¥' is not obtainable, we may construet a new X' which will do as well.

a=17 and ¥ = 10. Witk the aid

An exanmple wiil illustrate. Suppose

of some randon Gevice we let

9 with provaoility 10/17
10 with probability 7/17

This X' will work as well as the original X'.

} .
We shall now exhibit a procedure §k which improves upon 9{. At

1-

the 1P stage of the decision problem we could have defined ¢;

in
any ore of scveral different ways, depsnding on what informaticon we

chose to neglect. tor fixed i >k and X there are « ways to

o i-k+
define X% ak(l k+1) wuys to

_3 0 and hence Yj(zT). Thus ther= are
) : 9
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define Pa(ﬁv)' Similarly there are a

—_1 '_ . "~
hence a(h ) (i-k+1) ways to define Pi(fy)’ Thus there are

a(2k-1) (1-%k+1)

ways to define ZJ(ER) and

ways to define P?(zk). From the above, and observing
Lhe . used in X could have a ifferent definitions, we
the X d i Pelf()_c’;O d h X gifferent definiti ,

-1i,0 )
,_\-_
see there are at least a(ak l’(l k+l)+k

waye to define the random
variable Qi(zi). Most of these different definitions will result in
essentially the same estimator for large i. We may obtain an improved
procedure, however, by considering some of them.

We define z?,(u) u=1, «eo , ak as follows: Let u=1, .. , ak

5 be an indexing of the uk distinct Kk-tuples each of whose elements are

o stete s

: integers from thc set (1, 2, ... , a}. Let the uﬁh k-tuple be

¥ (t ). Let X(z) £=1, ... , a be the random variable

u,l’ cee t

u,k

derived from X by not counting the result of the lth trial. Tor

i ’ : .
3 example, X‘a) equals the previously defined X'. We now define
& (tu,J) (tu,g) (tu,k)
; —',(u) to be the random vecror (Xi-k+L s Xi-k+2 y see Xi ).
4
] . _ i
E 17 1 = l’ seee 1\ - L
k
3 : = f I px =k, k s e
: Tet: 9f (X)) = (PHX] () Af OSPHE{,) S1 t=k K+,
1 if 1<P§(§(u)) i=k, k+1, ...
\
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b}
(»)‘\__1) - —1—

BT

We shall now show V¥ 6, ¥i R('c;ki{, gl) < f‘.(cplic, Ql) where cp}iC is
k
as previously defined. We first observe that the cg)i U(—X‘) are
’ oA
identically distributed as q)li(_}gl) Then, supressing the superseript Kk,

we have

E[(cp (x,) - o, ‘2]

2 ~ 2
= E[g]] - 26,E[0,] + 67

k k
2 1 291 2
"-T[ZE[CP ]+2ZE[<Plul,v]J--‘—kyF[CP J 10
a u<v a u=l

k
= El(o, - 6,)%] - [a =L 8ol - 5 L El, -'Pi,vl]
. |

_ 2 2 © oyl
- R(q)i’ gi - Bek ugv [E[q)i)u] = EE[CPi‘u ] + L‘[q].v]J
= R(o., 8 ) E[(cp -9, )71

7= a, u<v 1v

S R( q)i, f—l)

we notice surict inequality holds unless Plop, (X.) = ¢, (X.)]=
i,u ""i .I.,V -

for all u, v 1<u, v ak. Thus we have strict inequality holding
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unless 4 = 1 or unless 6‘11( is composed of 1l's and O's. To

investigat= the asymptotic properties of @ we observe:

S ——— n

— [1 ~ |
1im o= R(g,, 6.) ~ g )
ns e izzzl (CPl, '—i) Rk,a—l(——n),,

f1 ~ 1
~ 1im = 82.) - =
UE 1 ig [R(o,, 8,) - R(o,, 6,)1 + < .

IRl

R(qu} —Ql) - Rk’a_l(gn)}

n 3
—— J1 « ey 3
< Lim f»n 7. {_u(q)i, 8y) - R(q)i, _Ql)j‘ since @ has property c)

1
5
t
Sl
ngls
O
R
™~
=
—
P
|
(SN
c
]
8
e
<
S
o
H,_J
¢

x Hence @ has property c). In order for strict inequality to hold it is
sufficient that there exists € > 0 such that, with the possible

exception of a finite number of values of i, ZE[lcpi a " % v“ > €.
u<v ? ?

If a=1 this condition is never satistied. For a > 1, however, and

for a large class of 6 such an € will exist, Let * be the set

b PR b W W T el HMOISAAL B v O [ e mdedes

of 6 such that ¥ 6&* there exist E‘l’ §2 such that

0< §1 < Gi < 52 <1 for all but finitely many i and such that the

13 first order empirical distribution function of _Qn does not tend in
the limit to ithe distribution function of a degenerate random variakle.

It may then be shown that a >1 6€Q* implies

PR

Y E[lcpi,u - cpi’vl] >€ >0 for all except possibly a finite number
u<v

of i.




Sinece the sum of independent identically distributed binomial
raaiom variables is again a binomial random variable, and since the sum
ig o sufficient statistic for 6, it is clear the methods of this

section can be applied Lo the case of r independent observations for

each 9;

D. The ncormal distribution
X

Let P{X < ¥!6] =fp8(t)dt
= 00
X } i(t—e)g
=f Lo 2ol gy o < X < oo

T Vo ¢

for ¢ >0 and -« <A <O <P <o,

For the present we assume ¢ 1is known, althcough later we shall modify
this assumption somewhat. As we shall see, the estimation procedure
in the continuous case is similar to that in the discrete case. Without
loss of generality we take ¢ = 1. We fix k > 1.

Let {ci, =1, 2, ... }] Yte a sequence of positive numbers such

+

1> o j—
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s the o dirensional vector consisting of zeros tor

I

.

X th . . .
211l comypcnents except for the K which is equais LO one,.

< 14

LAf yymeg <Xy T e Pl
7,100 =

¢ otherwise

1ck
Y
£.(y) Jék 3,55
Y. =

R g Lk w1 (ee)E
(y.) = £(% * ey) - il - ey
; 810y 2c,
r_ g, () -
| yk+m if fi(_yk)>o and 1=k, k+ 1, «o
| M) -
§ k Yy otherwise

if Pi*(fi() <a

Lt A ot ok st S 4 b1

@1;(351) =4 P*i‘(_)_cli‘) if @< P"l_*(-)_cl;) <B

B if B < P*ie(gl;) :

We shall now prove the decision procedure Eﬁ = (¢§, w%, eee ) i3

] uniformly asymptctically optimal cf kth order,

25




We chall show the conditions of the corollary to theorem 2) are
satisfied. k‘ )

| k1 \2
2 "2 ,z; (Yz‘eg-ku'
Let: Qi(lk) - T

I
T
alIr
T
1]

Q. (y. )
Uy ) =
Qly) 57,
K
1 e 2
i 1 2 2 } (Yz’e,j ")
ey = T e, |
=R L
Now ‘f‘or any lk )
g ) = Wly) -
i T Q,(n)
k
. K P
) 1 2 72 §(yz“93 K 2)
Bt ai(y) =- T (v - 85
= - 7,Q;(x) +a¢
Qi {x)
Hence Vl;(_yk) =y + ﬁil—{-)- :
ik



I\
=,
Hy
e
=
e

Let: ’"1(1};) At = %]

K . =
i;v;k [e 'Zal(y*, sekrt) ) 2 gl(yz J—ku) it
' ' J
k/2

i

2. (y, ) -
1k {i-x+ 1){en)

4 - c +
for some --Ylt,j such that v, N < y}}"j < Y, cy

' £ =1, «v. , ke What particular g_i’{“ 3 is intended
__— ’ ‘

will be clear from the context.

W

Then:

anLs b

o i-k N 1(1:-9 )2
n(y,) = 73 L Y [H f 2L e Ik 4y
1k_‘1‘k+l$‘j=k 2c zc@
i

% ()
=Tower ¢ oalnd

RN

where the yi’(‘ 3 in zi are those vectors whose components
A3

arise from use of the megn value theorem.

Nows for ¥ i=2k, 2k +1, ... , yeR, 8¢ 0"

i - yk
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k
i

Q. (X
1~ i —_
1-1-+1| fsilfi("lk

P {Ifi(fi‘) -

[i-x+1
T-2k+1

-

P

A

1£5(x) - mi(lfk” 2T TR F 1%

but from lemma 3) this probability is

[ L {i-k+1) __k 2, 2k
< 2k exp C 2 —————E—————(Si -lz.| - ——=) (2ci) -l

+ +1,1 -
< 2K exp {22(}‘ I S e S I R Izil)g}

k
i - - ——— O .
provided 61 |zi| T X T 1 >0

In a similar manner:

Let:

2, (¥ ¥ e8) - 2y - ci&)

o)
P
=
S”
I
'—l
]
0
+
'r..J
N
‘ﬂ
\
O
o =
0
<
Js
j

I
ke
=
A
I
o
(o]

Q! L, (y
-k .
il— Tt aly) oy -
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k
(X))
it=i 3
P {’81(—1) i - kK + ll 2 eil)_(l:: Xk]
. 2(1&1)
. Co2(i-k+1), g, g2 (%)
S 2k exp - k (e; = lzil - lagl - 77557 —3
i o(k+1 ok+1 2(k+1) i - k + 1, a2
< 2k exp {kEci) ( )Ei -2 ci( ) 3;-—T?—_—(ei - |z{| - Iqi’)

- provided € -_Izil - Iq.

Thus, using an argument similar to that used in proving lemma %) and .

letting B = max[|c], IBI],-ﬁe have:

P [lcpi()_ci) - wi'(zi)'lj>1—'j3‘-ﬂ—}—l(ei + B, + |y, [8,)]X5 = zk]_

LEAP I
< 2k exp {ee(kﬂ_)c?‘ai - 22k+1(i—:-%i-l)c?k(6. - lzil)e}
+ + + -k + '
+ 2k exp-{chi)z(k l)ei - ookt i(k 1) i-k+1 k l lz'l - Iq 1) }
. ; k

provided. 51 - 'Zil el mar ¥ >0

~ k

- ' - - ———————————
e; - lzil - gyl - g5=3 20

°9



To complete the proof it is sufficient to show that for some functions
k

: \ . .
ci(-zk’ _9_1) and Bi(_yk, 9_1,, such that either e, > Izil + |qi| trT T
or €,=0 and either & > [z,] + K or 8, =0, the following

i-k+1
limits hold uniformly in 8. o

11) lim E[i——lf—f—-l (B + |xi|)si(_1gk)] =0
Q '

: icEK(s\(x )- Iz (xk)l)
11i) 1lim E[ |

T R

. |
lo, - la,] >——%— ]z_o

iv) 1lim E
i

[ ic2(k+1)(e (2- [z (x*)l |q1<xk)|) |

v Z Xk
) e e - (] <t -0

i——)oo

i—»oo

K
vi) (Xk) EH (xk)l lay (X1 < (1- %+ 1)1/1*] )
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& < i ik Saend

i a'. oy sy .

Jise 12wt b et bnasns B (4t Lo st

Let : : '

( 9 ip ! > |z, | + LI

(i~ K+ I)log 1 (1 -+ 10og 1= 240 7y ey )t/

B, = {
i

LO otherwise

( Q o ?y - ‘

i 1 A k

T g1 F wowF w2 Hl lul = A
€ =

lo ’ otherwise -

o

two 1imits hold uhiformly.;—f'l‘;l:x,eﬁthix‘d and fourth alsc hold,_ recalling

1im ich(kﬂ') = o,
i
I

. Sinece ¥ 1 >0 there exists- S(N) < ® such that P[|X| >S]<n for

"~ all €eQ , we have: -

| Q
E{ai - |2, <(1 i kl:l)l/h]fp[(i Tk + 1o 1 N

K
) (1 -k + 1)L/

X ol S8 £=1, ..., k] +1-(1-0)" -

61

Since there exists. J < e such that E[|X|] < U for all 6eQ, the first .
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( )k/z 2, Z( i-k+8~ 3—k+e)
=P[J—k2ﬂ T-K+1 | <(il_{ll{°fi)l/h+lzillog1
lxi_k”i <8 £=1, «eo, k] +1-(1-0)F
y k/2e——K(S+B) DS T S P dix | < S]
- , ' (1_k+1)/'r+ i | ikt =

4
+1-(1-nm)".

" Clearly the fifth limit will hold if we show lim |z (¥ )10 i =0
i
uniformly in 6« and |y, <8 £ =1, ...’, k. By a similar argument,

to prove the sixth limit holds we need only to show

1im Hz'(lk) + ,qi(zk)l)log 1 = 0 uniformly for 6e { and |y£| <8
15
z = l’ LN ] , k‘

We first consider - ;imm|z (Ik Ilog i. For Yp - ¢4 < y}ﬁ <y, * cy
‘8=1’ l..’k;VJ'_"-k’ oo.,i

K
Z (y'f 95- k+£) ’%gl(yﬁ’e,j-kuF

|e - e

M=

!

k
1 2 1S 2, 2
| '§£§l(ﬁ’93_k+z) ' 3, _l[(yﬂ_ej-khz) (750 )]
= le - 1-e |

1



But

(v, - ej-k+£)2 - (v} “'ed-k+z)2|.5 vy = 9§y + 75 - 205l

av e A e AR erannne ) 3 aa el

< ;i(zs + 2B + ci) for all 9 €N .

I-k+4

© v

i Now ‘[x|<l=>|l—ex|=|2—35—|5[xl (e - 1) .

i v=1 V.

: Thus ‘

: 1 2 1 k. 2
s 3 L (VF 3’63-k+£) ) (yz"ej—kw)

5 =1 7 £=1 _

; 2:[ - e ]

i =K > -

g Izi(Xk)l = | /2

:_! .

(i - kx + 1)(2x)

(&)mc(S+B+c)(e—l)k forall 6 and 1 suffi-»

ciently large.

But since lim ¢, log 1 = 0 we have shom lim Iz [1og 1 = 0 for all

5w ) i o
2 and lyzi < s £ = l, see k.
We now consider lim lz |log i, This limit is more difficult to

o
evaluate. By examining the argument leading to the consideration of this

‘1imit it is elear that we need only show 1lim Iz |10og 1 = O for ¥y, such that
i oo

ly,l <8 for £=1, «e. , k and y # 9J for J=k, k+ 1, soo o We

shall use lemma 5), It is clear that there exists M < @ such that

i
;_
|
:g
i
%

Cy = (= =) for all 6€ Q. Thus we have for i >k and y  such

that |y£l.§ S and ¥ # 6, £=1, vee , k 3=k, k41, ...
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k-1
1 -
i-k  Th=1 ‘j k+13 -E(yfi*-QJ) —5( k**—ej)
21l =] 3 2 : Z
j=k 2e (1 kx+1)(ex)
lk—l
Y (6, i) 2 ;
YA B o —(yk+c -6) "é(yk"’i'e.j)
- v & ~=
i=k :_‘ci(i - k + 3—)(2")1{[2
where y, - ci<y1;j<y£+ e, y-)k(-*= k+2P1,J i
VIO = Yo 7 B, 4%
%(Bﬂ)z
| }l < hifon M e o v=1, 2
v, T2 Sy - 851 4 o

k
1 2 k-1
-= -6
i-k 2,‘:‘1_(” grieed '£gzl(3’?'3'g)(vfiﬂ’z’zes-ku)
1 N € ==
and ]zi] < y . e
T (1 -k + 1) (2n)" 2c,

e’%(yﬁ*“yk) (hy-29,) e'%( ypx¥-y ) (g 20 J))

1, 2
Hereeezep) | eolaes)



rtmian e

AT PRS2 LBt e Bt (B T A e AR Y ar ol 07y 2 B TR LSRN e PR et o 3 B e 70

s

C e

We shall now consider various parts of the right hand side of the above

inequality.

V) =k, «ce , 1 and 1 sufficiently large:

v
l _ .
a) Let gi,j = V%i <1

then lgl,Jj < ci(,e -1)(s+ B+ ci)(k - 1)

k-1 :
1 .
2 Zl(y?’yz)(yz’yﬂ’éej_k+z)

L= '
and e =1+
| £, 3
@ (-2c%-cy +cb,)
) Let € ¥ 2 % 7 G T %47as
2,3 A Vi
then |, J| Scle-1)(5+B+ ¢y)
, :

and e 2 = 1+ §2,J
) o c)laly, - o)1
C) -het CB)J = vzl (.\; + l)l
then |§, .| <e (e2(3+ ) - 1)
~C (yk"ajl
. Ll =e :
and % = - 2(y, - J) €54 .
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o [- 2 - - 20
9 Lt f - % [- 2 - 3 ) (* + vy - 20,)]
- Tk, \_‘:2 civl
 [- %(r“‘** - Iy o oy - 29;1)]"
- v::»_“‘ c. v
(stBte))
ihen 51:’1| < Eci(e T o-1)
]
'—(y **‘y],)( ‘;k—eej) _ﬁ(y:{**-yk)(yltmyk—ddj)
end £ - e
c.
i
** r
B - (yk —y}.)(ylf*-'- y}\ aegl— L r*H... T )(y***+y - 26_.12 Lt
- 2c, 4,3,
2 2
e) Let (g , 2e,(p) 5= Py, 5)
then ]g Jl 2c, | |
and ’ 2c, '
2 2
()% - ()2 - 20, (3 - 3, %%%)

2c.
i
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PR

f) Let Lo y= Pyt Byt

4 l 3
) L 8/5 -2-(B+s)
then [ty (1< Ipy g =31 * oy - 3 Sy ot e

K J

2

and 2(y - 6,)(p) y+py 4) =20y -6)(1 L5 )

=2l - 8y) * o

M 2
16 2z B(BE)
where l§7’3|5ci 5 © .

Using the abcve six results we have for sufficiently large 1i:

1 ,— J=k 2(21r)k/2(i - k + 1)

< M*ci where M¥* 1is some finite constant independent of 6, i,

and xk.

n

Hence 1lim Izillog i =0 uniformly ir 6 and y  such Lhat y,l <
iow
£=1, ... , k and yk,éed J=k, k+1, a4

We now consider lim .lqi(zk)llog i for Iyzi <8 £=1, «ss , k
i o
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lh-.x. 2
) 1500y 0" By,me,0y)°
i;‘:\ L ._3:-1 ' :-k‘he i +C e ) ) E(Yh ci"ed)
LN y -
( ) j—:k(?ﬂ'\L . \
a,(¥, (1 - k + l)c
- k ~
1 . <
1-k k2 525!
1 5 1 £=1
trierT L (- 9y =
J=k '
So
y, + ) ( @ )2
| Y i-k 6_2 BT L— KT
\ = — \
lay{g)! 7w T X “e
1=k <
1 2
gt
+ (yp - 91)6
aa o
_ 1, 2 L2
_ _ . _ - D¢ B
. K|, sleiree vy -2e,fy) e Ao ey
< n
i-k+1 P 3
* (y],_ B GJ)' '
c, v i Y
- —— ° - - —_.._- - J’ 9
0 [ ci(e + Jk ea)] e [ ci( 2 yk J)]
et gj - Z Sa 1 - Z 2c, vl
v=2 i . V:—Q B j
B+S+cl
then [t) < 2e,(c - 1)



¢
i
i

1l, 2 1l, 2
—-— - 2] — - +
e 2(ci+2ciyk 2ci 3 o 2(01 2ciyk 2ciej)

= = - ¥
and 2ci == Y%t ej + <, .

BtS+c.
i

Hence lqi(lkl-s 2ci(e - 1) for all 8, ¥, such that |y£|.5 S;

and 1lim lqi(lk)llog i = 0 uniformly in 6 as desired.

js o
This completes the proof that the decision procedure .9# is
uniformly asymptotically optimal of kth order. gﬁ was defined fcr the

case o = 1. If we had kept arbitrary o then E& would have been

deTined in the same manner except tnat gi(zk) would have been defined

2re | - -

o £,y + eigy) - (g - eyl

as 5o . If we relax the assumptiom o
i

known tc the assumption o unknown but egual for all otservations, then
it may be shown that if 8? is an estima*te which converges inr probability
to 32 uniiormly in 6, we may replace 02 with 8? in the definition
of gi(xk" and the resulting decision procedure is still uniformly
asymptotically optimal.

If the problem is modified to allow 1r independent observations
for each ei, then since the sum of these 1r observations is suificient
for ei and also normally distrituted, the above procedure will still
apply. We note in this case that if the common variance is unknown,
then for each i the usual estimate 8? is independent of Bi and

n 2

l NS . . 2
= ) 0, is a consistent ertimate for .
=
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g aistribution.

{ “:‘ s a"l "'a't_“ 1 -
:J -f,-m ( t) e dt O0<x <w
8]
for 220, 0< << pCw
We assume a 1is known; and fix k > 1.
Let [ci], 230 Yj 40 £5r and g, be defined as in Section D.
< Js 1 i
Let:
e,(y,)
(a'—l_ i ¥ 3 £ o i = -+
" F3) if fi(lk)>o and i =k, k +1, ...
k i=k
PX(y,) = {
\jL otherwise
Yk
{ O if P*if(_)g]:) <a

Ph(x,) = { PHXD)

\B

if u < P;e()_(}i‘) S

k F

We shall prove the decision procedure g# = (mi, mé,

.-
uniformiy asymprrotically cptimal of k-? order.

T7C

... ) is



P

e

We shall show the conditions of the corollary to theorem 2) are
satisfied. Since much of the argument is similar to that in the normal

case we shail omit many of the intermediate steps.

1 y
, _ 5 <ktt a-1 VE ke
Let: Q(y) = L ;Eﬁ-—%(gy—

() - 3, (x)
1\ 3¥,.
. -k+£ v 1 8 gk
Q (Ikt
hen 1oy all ¥, suth tagt Y- > 6 £ =1, , K

But
a
: _k+z afl VePyaeg] Yy WGy a1 a-1
Qi(Xk) _klill-[ e ]'11—(187 € (a - l)yk Jyk ]
a-1

Q(x) - &y



Hence

Let:

Then!

. Qi (x, )
k(y‘h) a - 1 1\

V.(y,) = -
i v, iy
m,(y,) = ELr, (X9 I%; = 5]

1-k rx 9% -y%

1 | j-k+£ a-1 L£,5 3-xtf
L \ = T !i L
zi(_}_kl T -k + 1 ,j:k l—i':-_f'! T(2) (y.f’.j) e
a
= Tla) A .

for Il*c,.] such that Yy - 4 < y‘i,J <yl + e,

Q (¥ . . e x

m, (¥ TR T I Zi(Ik) or suitable J% .

2(%-+] 1i-
< 2k exp «J\,BE (k1) 2hy  ,2ktd i__lii_%cgik(ai— lzil)g}

. i1 k
. o kB
pI‘OV.Lded Oﬂ - IZjI - -T**-_Tﬁ 2 0
¢ r a-1 LS
- 1) -(a-l) )
here B = 2l .
vhere max o ——T_GT e | , 1

12



23 (¥ * e8) - 23( - oey8)

Let: z]‘._(_yk) = 2,
(y.) = i Q¥ * o5& - (¥ - ey Do ()
G =TT E T 2, i-k Ik
Q! (y)
Then: Ble, (X]) [X] = y) = Tl'-%—l vyl + 2y

k, k+1, ... 'y, suchthat y, >0 £ =1, ... , ¥ 08¢
J R z ’ —_—

QI(X,

. S S| k
g [lgi(ﬁi) Toxe Tl 2 lX e I |

i 2(k+1) ok+1 2(k+1) i - k + 1 2l

n >3 - - r—————— - ! - |
< 2k exp ﬂLB (2”1) €, -2 ¢y T ( i lzt] '41"} |
kB*
v 1 - ] - - ——————
provided €. |zi| lqil o % F 1 >0
op,(t)

g 3 k'l 9

where B¥ < is such that max (p,(x)) —r— < B¥ ,

X,y>90 jt=y

Thus we have:

r . :
, | i-k+1 8 -1 3K
Polog(y) - vy (XD 2 gy (e + 88y +J—T—L8.)lgg ]

QX e =y
- ) .
< Zk exp {B2L(k+l)c§k6i - 2Ck+l 3——%-:—& C§k(51 - lzi')g
) 2(k+1) 2k+1 2(k+1) i -k + 1 2|
+ 2k exp {B*(Qci) e, -2 ey —-—k————(ei - |z - Iqi]) J,L
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,.

provided .' - [Z | - m >0

TN R PO I <

2] - eyl - T3 20

To complete the proof it is sufficient to show that, for approuriate
5, and e, the limits i), iii), iv), v) and vi) listed in Section D

hold uniformly in 6, and that

1in) 1im EI 1 (5 ]-)81‘5§)J = 0 uniformly in Q..
i | (xk) s
Let:
&%) " 723 (%) > lz] + ¥R
(l_k-l-l)logvi ] (i—k'*']leg i~ 1 (1-—1{""1)1/1‘
5,(%) =
C octherwise
[ 4y if Y lz3i + |l
{i =k + 1)log i (1 -k + 1)log 12 i
. k f-
(1 -+ )"
/
€y (p) =<
0 otherwise

Th



- .

6eQ . Hence it remains only to show:

150
ssy‘css z'_-l, LR ] ’ k )

Now

=l L %

J==k (r(a ))

ﬁyfj - ,3 J-kt+L

a-1
] ﬁ o
=1

2y )| S T2

75

Then limits 1), iii), and iv) clearly hold. Since E[X] 5-3 for
all 6ef 1limit 1i') aleo holds. V1 > O there exist s(n), 5(n)

such that O<s<S<w,P[X<s]<% and P[X>S]<-T2-1 for all

lim |z (zk)llog i=0 wuniformly in @ and y  such thas
1o =

sSyzfs £=1, .co. , k
1im I"'(xk)]log 1 =0 wuniformly in & and y_ such tha:
15w

8<y, <5 and ¥y ;4—3-‘—'-'--1

J

z=:., oo-,k J=k,k+l, cse

1im ]qi(xk)llog i=0 uniformly in 9 and y  such tha;

ROSRY



7}
Let ‘1 g = 1 ~ =
J) yz
c; ¥y 4
. - % < G4 o = - —— spponss de —
then Yy Li<yzxy£ s > 1 s<y£<l o
¢4
a-1
fi
JA k :
A= ' _1 h R
s0 that 1 = T[ |1 - Cl z|a =1+ Cl
. ’ T

where, for 1 so large that ¢, < 8,

© 1g=1
Let {;am y

V=21
then |§2l < ci(e]Kfa - 1) for lcil <1

k
-£Zi(yj-y£)61_k+z
and e =1+¢,
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Thus

- - 1 TPy
lﬁ (7 )al y;e,‘] k‘l'l ﬁ y?:le Ijk‘i‘!l
=] _'

_ }jl y:- 48 ,j-k+£l ﬂ ‘

1|(1—c>(1+c2)—1l .

S&-l~(|£1|1+ |€2| 4;3 lcl§2}) )

8o that  1im |z (-Yk llog i=0 un:lformly. |
i I .

do=

"“’? Vz)ej ke+4

- 1

We now consider lim lz'(xk)llog 1. As :|.n the norma.l case we shall

use lemma 5),

We have:

)a.-l Yf 'y d J~k+zJ o

. ' ~ ] (y* ‘
1 ‘ 1-1 Jﬁl J-k+4 {jll ﬁ,ql

,lz'(Ik)I STE—E D) L o

*¥

{2

~yERe ]

sy -
[tgrpe o0 et

T oam1 Vg0 gkt Coaer ~(Hte)e;
[ ] [ o o T

201

yk. -

i

‘20i

7

c )a~1e*(yk-ci)ef]

\,‘“f A

wf
Bn we.
W g A



) gk(a-1)gka lj.[& _ (yj;} SIE S e
T (1 - x + ) (r(a))E ,1—1& ( ’ _

a-1
.3 6
A ) y ,,-1) “k","a" W
2¢,
L a-1 ' a-1
| (Yk N °1] _(Yk 3 °ij- e2°iej '
) +ci-yf;‘)93 yk. yk .
2ec,
uhe?e: yifﬂ =%t 2P1,Jc1 N, T % 2p2,3°i
: 1 lmc‘l : 4Mr(a)e®Sc i —
P -5 S v T- 'S - v==1z2
v 2 _ﬂpe(?'k)' 35 a - 1 - 0 ¥l ’

" We shall now consider various parts of the preceding inequality for some

fixed J k<J<i-k. To simpli“y the: notation we lei

| K,
¢ =cy 0 = 63 in what follows. We assume sufficlectly lavge L.
v
' r =1 - 2,3
a)_ Let 81,2 1 v,

' e
then |§1,z|_ <=
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U e ke ik A M S SR A7 4 b b ke ¢

- .

ool

d)

-1
=11y} a
w L5 e

where IQJJ < c2(kpl)(aﬁl).

< 33

Iet §2 Y T
v=2
+1
2 2%
then |§2| <e 5
8
-1
a-1 2p,c ® 2(a - 1)p
1 1
and (L= = (1 + =1+
( 5 ( ) 1 " £,

Let L5 =
atl
then |¢ | < ca.g_ﬁ_
)
Pt I 2pye ©7 2(a - 1)p,
mld. ( , ( = l - C?
Y y
Yo vi
o o8~ -1
then It,hl <ec -2-;5—
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e)

&)

h)

[y tc _ (a - e
ard | - ’ =1+ ” +§’+
Let (a-—l

v-—2
n AB=1
then |§}5c322
8

wa (157 ca - fese g
3 y 5

Y
[2c(p, + 2,)0]
vi

Iet §6=

v=2
then |4 < Be® - 1)

_(yxeeye)o  2c(p p,)o
and e = e '

= [(2p, - 1)es]"
- vi

Iet L, =
7
' v=1

then IC.?I < c(eﬁ - 1)

(2p,-1)c6
- X%
and = (y+e-y* )aze 1 =1 + (:7 .
et fo= VT L_CQ.)__
8 & v
V=2 °
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st el Pl b sl S,

PR

then |§8| < ca(e$ - 1)

2¢0

and e =1+209+§8.

v

k-1
w [ :1 (”f,,j - Vz)ea-ku]
i) Yet §9 = v§1

vi

then |¢g] < of 1P _ )

- _' _y 9
and j{le‘yf,a z),j-k+z=l+§9_
. =1

Thus

ﬂ)a-l (I.—_._*’a-l -(y***-y**)e-!

1™ e [

a-1

I+c)a—l_(z-c o2cf
. e-(v"‘c-r**)e[ ¥ o ¥ ]

2(a- l)plc 2(a- 1)p2c
Pt Waitec.
(2+ ¢,)(1+ &) L L
» - 1 ‘ - 12c
1+ C7) [1 +L.—L:y C 4+ §h - (1 - :1 +J§5!(1 + 2¢O + ga)]

+ %’ (1 +2¢c(p, +p,)0+ 1;6)]
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where |4{| < cM* for some finite

= |(p; *+ p,

constant M¥ independent of o

E, or j.
] . ' i L - - :
Slop -3 55 - e iny -l 1B el

< cM¥¥* for some finite constant M¥' independent of ) g s Or Jo

—

Hence 1lim |z'(1k) log 1 = 0 uniformly in £ and Yy for the sei or
h .

Ik of interest.

T+ r~y remains only to show 1lim |q. (yk)llog 1 = 0 uniformly for
p Y-
¥, such that s<_yz_<S £=1, ¢ee , k. But

i-k

6 62
_k+z a—l RIOEEY)
l )l s =55 Z: (:ﬂ? )Tqﬁj

(b'k + ci} ’-ciej i (yk - ci’ eciej ‘ '

-y 0

o gl Vi \ % fa-1) 4 ]
: 2¢, L Yy J

So it is sufficient to show that s <y <8 0fef

a~1 0 r - a-1 o
i( ; c} e - ( Yy c) & ~2-1 0| <en

2¢c Yy

where M is some finite constant independent of 6, y, or c. Using
parts d), e) and slight modifications of h) in the proof of the previous

limit we have:
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ok o lebade S sats

PR SIS  I R

}
|
3
;

ytc a—ie_ce - (IL:_Sla-leca i
' ¥ y 8-l .,
2¢ Yy
- {(1 + (a -x?}c + gu'(l - co + Cé) - (l - SELi%&lS + ;5’(1 + 0O + gg)
2¢ )
.a-1,.,
v

s

< cM as desired. This completes the proof that the decision pro-
cedure g# is uniformly asymptotically optimal of kth order,

We note, as in the previous sections, that if the problem is
modified to allow r independent observationg for each 91, then the
sum of these observations may be used to obtain an asymptotically
cptimal decision procedure of. kth order.

Ve now consider the case in which the other rarameter is unknown,

6
that is pe(x) = Wx'a'i xe'le-)'x for known ). It may be shown that if

/- { g, (%) £ .y ) . .

L+!\K+WYR if Ii(lk >0 and i=x, k+1, ...
'.Pg(xk)=<

1+ ka othervise

\

and all other definitions in this section are unchanged, then the

résulting g# is uniformly asymptotically optimal of kth order.
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F. The non-parametric case.

We now consider the following probiem. Let T = {pe(-): e Q)
be a class of probability mass functions, each of which assigns proba-
bility one to a specified denumerable class % = {x] of real numbers.
Q is an arbitrary index set., We assume for each 6 in Q that pe(-)
15 completely specified. Let h(:) be a real valued function on <.
Let M8) = E[n(X)|6]. We assume E[h“(X)|6) <B<w for all & in
. For some unknown Qje ¢ we observe r + 1 independent identically

distributed ranuom variables X,

5,00 7t Xj,r+l with P[Xj = x]

S
= pe'(x) s=1, ... , T+ 1 xeZ. We wish to estimate A(Gj) on the
basig of these observations. For example, if h(x).= x then we are

" estimating E[XIG]. 1r $j is'our estimate we suffer a loss of

(mj - X(Gj))g. We now assume we are faced with a sequence of such
decisions. In other words a sequence {ej: j=1, 2, ....] is
selected from 9 . For each ej we have r + 1 observations and we
may use §j to estimate Gj, where éj is the - j X (r+1) matrix of

observations (X Johns [3] has consilered this problem under the

s,t)'
assumption that each Gj is an independent observation of an {-valued
random variable © with unknown a priori probability measure G
defined over a suitable o¢-aigebra of subszts of Q. We shall consider
the case in which the sequence [Gj} is arbitrarily chosen.

As in the previous cases we need a standard to use in evaluating
a particular decision procedure. For any gne ot we form the kth

order empirical. probability measure Gﬁ such that for any sets

Ql, ooy Qk in the o-algebra,

8L



4 e o Anamo— 3

) el

k 1
Gn(Ql, . Qk) i rera [number of 1 (k <if< n) such that
O xep€%y 2= ooy k]. If we assume for i <k <m that

[ei, i=1, ... , m} is a sequence of random variables taking values

in @ with _8_:1 having any k-dimensional probability measure Gk, and
@m is independent of @l, o em_k, then the Bayes estimate for

k(em) is E[l(sm) l)__gfl} eud the Bayes risk is

Rr,,l(Gk) = E([Me ) - E[Me) lg:]]e], where )=c:1‘1 is the k X (r+l)
matrix consisting of the last k vrows of }__(m and thz subscript r+l

in the Bayes risk refers to the number of cbservations for each parameter

value. We now take as our standard R_ r( _Qn) = Rr(Gi), and seek a
b4

procedure _Qk such that

— 1 o ok 2 ]
F) lim[sup [— Y E[{9.(X.) - M6.0)T -~ (9 )J}<o .
¢ n . it=i i’/ k,r'-n -
n- ot g =1 ,
. o s

We observe that Rk,r +1( _Gn) is not & desirable standard since if ¥ is
the class of binomial densities, for example, then, as mentioned eariier,
Rk,r+l( _Qn) could not be achieved.

We observe that theorems 1) and 2) are still valid in this case
when Rk,r(-gn) is substituted for Rk(_Qn) and property F) for the
property of uniformly asymptotically optimal of kth order.

We define:

Xl,l; see xl,r

A,

A" = . ‘ . wherce x g. ¢ 18 an arbitrary real number.
. . )

xk,l, 00 3 ﬁ’r
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A?q) qa=1,2, ..., m(Ak) to be the m(Ak) distinct matrices
obtained from Ak by independently permuting the elements
within each row. Clearly 1 < m(Ak).S (rl)k.

Xj-k*l,l Xj-k+l,2 ’ Aj-k+l,r
Xj—k+2,l Xj-k+2,2 tt Xj-k+2,r
=

=JsT

X X, . . X
Js1 J,2 JsT
{1 if there exists q=1, ..., m(Ak) such that
k k
. = A i =k, k+1, ...
S3r T M) T ’
k
M.(A) =
549 = ¢
0 otherwise

k k
( = i =
Zj_A ) Mj(A )h(Xj,r+l) =k, k+1, ...
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%: MJ(AF)
J=k
w(A¥)(1 - k + 1)

pﬁﬁ)=

i

)
_J=k

n(A%)(1 - k + 1)

zJ(Ak)

S 7k
P,(A7) =

B, (4)

Pi(Ak)

1f P(A7) >0

elsewhere

+l

305

if

) 1f

if

Y

i-"—"]’ o.-’l’l""l

. L/2
P?(KII,I) <~-F

J X k,k"'l, e
—5‘1'/2 < P*()Ck ) < 51/2
i*=1,r

1=k’ k+l, R

/2 < Pg(x# )
- =i,

We shall prove _Qk = ((pl.t, :pg, ... ) has property F) provided the

following condition on ¥ is satisfied.

Vv €

37

0<<eXK1



n 3. k _c \'1
lin = Y oPiY {? [L Py (Xi—k*z s) < ie! = 0 uniformly in 9.
nes o' izk  bj=k £=1 s=1 = J-k+i e -'

where X, has probability mass function p (). Sucha
i-%+l,s PRy

coudition is satisfied, for example, if €e Q xe%=@>pe(x)‘2 n(x) >0,

gince in this case

Jasls

kr
ﬁ ﬁ P (% ) 1ync)
£=1 s=1 61 k4 4 (ﬁ l)I+s
T
1]
< Z ¢eo o Z I[ j ‘n(x c)’
T ox €% X, €% “f=1 s=1 {(£-1)r+s l-¢,
1 kr
i
Il p (x )
£=l s:l Ol k+z (‘e-l)r-'-s
{
l if a <b
where, as before, I(a, b) =
¢ 0 otherwise .
\

But ¥ ® >0 there exists a set %6 < & such that %5 has only a

finite number Ny of elements ard P[xeﬁé] >1 - 8. Hence:
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— i l )
o Z I { n(x ’ ), """"'J ﬁ ﬁ p (x, - )
e y o Lgoy g (BeDwes’ ydme] oy h) TOy ey MA-l)THs

< T .. HT]r[n(x/“+)-—l¥--1+1-(1-f5)kr
T x.ex eu £=1 s=1 Jr+s’’ yl-e]
X, €%g Xy €58
<1-(1- 8)kr for 1 >1i  where -——ii—— < min [n(x)] kr
(io) xedy

Since ® was arbitrary the result quickly follows.” This is not the
only case, however, in which the condition is satisfied, as was seen in
Sections A and C.

The proof that Qk has property F) follows the same>general lines

as in our other examples. ¥ i =%k, k+ 1, ...

t[ P, (x, &)

Let: Qi(Ak)
s=1 = j-k+&

1
u I~

i
QH(A") = 2 ¥ Z n(x)p, (x) i P x, )
i Tok+d Gox 0y 4 .Ew 8 jkes Lo

R, be a set of k X r matrices such that P[X? reRi] =
=<2
and AkeR = q(a" >0
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X .
Then for A €Ri we have that one version »f

: k
Q*(A™)
E[X(@m)ixk = AR] is egual to W? r(Ak) = —3;_1E_ wvhen @h has
s ’ Q, (&)
e K
probability measure G, .
But
k
xk K n(A) k
. q=1 £=1 s=1 = j-kt+& ’
and

E[M (A )}E[h(x

1
>

‘ ¢ k
E[zj(;c‘i‘,r) l,)=(}l.‘,r ] 1))

Y h
”‘(“zﬁlﬂ P e I <x)pej(g)

.j:k,-on’i"k-

Hence, arguing as in Section A,

48 - i-k+1 ;52

T S i X i
pupi(x‘i‘,r) - Qi(xl;’r)l >8,(A)[x; = A1 <2ke Te

A K
cvided B, >—— 77 -

Since Zj is not bounded we are unable to use lemma 3). We can, however,
use a simple Chebyshev bound, observing that Var[ZJ(Ak)]

- 2 ’
ﬁfEEh (x )]‘5 B; and hence using an argument similar to that in the

Jyrtl

 proof of lemma 3) we have:
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PIIB,(xf | - qux; )] >8,(Ax] = &°]

kB k

< provided o 1 zm

- 2
(1 - %+ 18y - 7—57)

It thus follows, using a modified version of lemma 4), that: V¥ AkeR 1

Plloy(x,) - ¥, (% DI > 1% = 4]

Q,(4%)
i-k+1.2
ho, -2 =% x°B
< Zke e + 5
k
(1 -+ )6, - 7557
provided & >--——15----
1-1-x+1
Thus we mcy take
A (5. + B1/28
E 1 ¢ 6, >t
Q i“i-k+1
£, =4
k0 otherwise
i-k+l o2
4o, -2 = 8y K°B(4 - k + 1) k
2ke e Mrvan R S
[(1-%+1)8, - k]
£, = ¢
k 1 olherwise
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A 1/%
Iet a

il

-

Y

/Qi log 1 kil/b'
7% ¥ Q 2@k + )ig 1

0 otherwise

\

-
Then clearly 1im= Y E[¢, + (. [Q, >a,] =0 uniformly in 0.

n i 11 -1 -

n—»e" i=k n
Since our assv ‘2d ccndition assures that lim [%1 Z P[Qi < a_.]] =0
n-» o i=k *

uniformly in 6, theorem 2) is satisfied, and Qk has
property F).

We observe that in this case, as in the binomial, the cholce of which

th

information to neglect at the i stage was arbitrary. In particular

g; , could have been defined in any one of (r + 1)k ways. We thwu
s

could have defined (r + 1)k essentially dirferent estimators o, ,
b4

each of which would have the desired properties. As in the binomial case

~ (re1)e
it may be shown that cp1 = z_}__f z q)i,u is an improved estimate.

r+1) u=l
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We note that if T had been defined as a class of absolutely
continuous distribution functions, a similar decision procedure could
have been derived. As in the normal and gamma examples, a sequence
{ci] would allow us to treat this continuous case as we Cid the discrete

case, using lemma 5) tc show the appropriate limits hold.
G. The emwirical Bayes problem.

We now consider a modification of our decision problem in which the
sequence {Bi} is not an arbitrary seguence, but is instead a sequence
of observations of random variables. If these random varigbles are
independent and identically distributed then the problem hﬁs been called
the empirical Bayes problem. Many fine articles have been written on
this problem and the results obtained have inspired this paper. We
shall here, however, consider a more general form of the problem.
Instead of assuming the 6i ‘to be independent observations of a random
- variable 8, we assume the sequence (61] to be a realization of a
stochastic process {ei: i=1,2, ... } which is strictly stationary
of order k. In other words for any k positive integers
il’ i coe ik and any pbsitive integer j the k dimensional
random vectors (9i , ei s eee 5 O

)8 pas vee s Oy L)
1 " ACEEPA Lt
are identically distributed. In particular, we suppose that

) and (ei

vi=k, k+1, ... the vector (81_ cee ei) has distribution

41’
function Gk(lk)' Thus if Gk(xk) = G(yz) for some G we would

have the standard empirical Bayes case.
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If Gk were known and if @i were distributed independently of
(@1, @2, cee ei-k) then the standard Bayes argument would yield
A = E[@i|§§] as an estimate for Si which minimizes the expected loss
and achieves the Bayes risk R(Gk). Even if @i were not distributed
independently of (el, €y +er s @i_k) A might still be a "good"
estimate, and the risk R(Gk) a reasonable risk to attain. We shall
shoﬁ “ha any procedure vhich is asymptotically optimal of kth order
(derived unier the assumption of an arbitrary Q) will also achieve

. . F K
asymptotically an average risk less than or equal to R(G ). To be more

precise, we shall show the following:
Let: §© be a bounded interval of the real line.

(@i, i=1,2, ... 1 be a strictly stationary stochastic process'

of order k.

G" be the joint distribution function of (6, .- » ©)

n=1, 2, ...

4 be the class of all possible sequences of distribution functicns

{Gn; n=1, 2, ... } such that G" is the n dimensional

+
merginal distribution obtained from c" l, c" satisfies the’
above definitions, and Gn puts probability one on ot for

all n.
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|
1
|
%
|

R(wi, G') be the risk of using the estimote ¢, for 6, when
the vector ©, is distributed according to G .
This risk depends, of course, on the class

T o= [pe(-): oef .

(= BT

L0T3

R(Qn, Gn) = R(cpi, Gl) where G' is the i dimensional

marginal distributica obtained from

c”.

We now state and prove a generalization of a theorem by Samuel [11].

Theorem 4) Let § = (pe('): 02 } be a class of distribution functions.
Let gk be a decision procedure which is asymptotically optimal of

e

kbh order for T . Then

Tm  R(@, &) < R(¢")

n —

for all {Gn]e,&. Ir X is uniformly asymptotically optimal then the
?

above inequality becomes

——

lim { sup [R(QE, G?) - R(Gk) ]} <o0.
n-—-o {Gnk&

95



Proof':

Let R(cp , _9_ ) = E[(cpl(_)_(];) ai)g]. Then:

kK .n n X i 1 n 5
R(9, G) =< igl R(pg, G) == ; E[(cpﬂ(_}‘(l - ,)°]

n
-2 ¥ EENGX,) - 0,)7) e, )

i=1

Sl

o k
= igl E[R(0;, 8;)]

Sl

For the remainder of the proof we shall let El[ -] represent expsctation

vhere V¥V i >k @ ces @i have a priori distribution functioh

-k+1’

G*, and E2[-] represent expectation where 6,

k1’ T2 @i have
a priori distribution function Gﬁ, the kth order empirical distri-
bution furction generated by 6,, 6,5 ... , 6 . We now let A()_(IJ{) be

¥
a form of El[@jl_)_(l;] and »y(g_(l;) be a form of Ee[ejlgj]. Then A

achieves the risk R(Gk) and ¥ the risk Rk(gn) We observe V_Qk

k 2. 2
B, [(A(X]) - ©,)7]e; = 8,] = Ee[(A(_)g?) - 8,)%le, = 8,] -

We call this common value L(6 Then

5.



R (6.) = E,L(V(K) - 8,)°]
< BL(AE) - )7

= B,(B,[(AX) - 8)%(g.]]

1 n

Hence:

1 n
B lR(E)) sqmiw1 L BalMOipr e 0 8]

n

1 ™ k __ k
“TTEFI o MG = RED .
i=k

But since _f_pk is asymptotically optimal we have

e 1 & o/ Kk 1
By lim 3 ) R0 8;) - Rlg)y<0
n— © =1

and hence, since our losses are bounded,

B [R(], 8,)] - EJ_[Rk(_@_)n)]J <o

= 3 IS

R

lim l’
n-o 7 i=]

= Tim }R(eri, ¢") - R(Gk)! <0 .

n— w - -

The proof of the second part of the theorem follows immediately.
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Corollary.
If in addition to the assumptions of theorem 4) we add the condition
that Yy jJ=k+1, k+2, ... ®j is distributed independently of the

vector Qj-y then the two conclusions of the theorem may be replaced

by
k .n k
lim R(gn, G) = R(G)
n-y o
and
: k .n k .
lim R(Qn, G) = R(G") uniformly for {Gn]tﬁ
n— ®
respectively.
Proof:

To prove both parts of the corollary it is sufficient to show

1im R( k, c™) >-R(Gk). But since ©, is independent of @ R(Gk)
Lim 8@, 2 i

J 3=k’
n— o«
is the minimum risk that can be attained by any estimate of GJ. Hence

R(p;, %) >R(G") for all 1 >k. It may be shown that
i <k=R(6YH >R(@EY so thet R(g}, 61 >R(GY > R(EH) for an1

1<k, Tus R(g, 6" >R(G¥) for all n so that

1im R(g , ¢") _?R(Gk) as desired.

n—

Q.E.D.
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